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Abstract An approximate analytical solution of the Schrödinger equation is
obtained to represent the rotational–vibrational (ro-vibrating) motion of a diatomic
molecule. The ro-vibrating energy states arise from a systematical solution of the
Schrödinger equation for an empirical potential (EP) V±(r) = De{1 − (ε/δ)[coth
(ηr)]±1/1 − (ε/δ)}2 are determined by means of a mathematical method so-called
the Nikiforov–Uvarov (NU). The effect of the potential parameters on the ro-vibrating
energy states is discussed in several values of the vibrational and rotational quantum
numbers. Moreover, the validity of the method is tested with previous models called
the semiclassical (SC) procedure and the quantum mechanical (QM) method. The
obtained results are applied to the molecules H2 and Ar2.

Keywords Diatomic molecule · Empirical potential · Ro-vibrating energy state ·
Nikiforov–Uvarov method

1 Introduction

The investigation of the rotational–vibrational motion of a diatomic molecule by means
of the direct solution of the Schrödinger equation is beginning to make a major impact
in the area of the experimental spectroscopy which is used to determine the spectro-
scopic parameters of diatomic molecules [1]. Spectroscopic techniques are fundamen-
tal in studying electronic structures, spectroscopic constants and energetic properties
of diatomic molecules. Moreover, these techniques are also required for parametriza-
tion of new methods based on theoretical analysis and computational calculations
[2]. In the theoretical and computational studies, the electronic and nuclear parts of
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the Schrödinger equation are solved separately via the Born-Oppenheimer approx-
imation [3]. To obtain a representative sample of geometrical configurations of the
nuclei, the electronic part is firstly solved in space and hence the relative positions
of the nuclei are described by a function of the space coordinates. The Schrödinger
equation is finally solved using this function called the Born-Oppenheimer potential
energy surface. Although computational efforts have been directed to calculate poten-
tial energy surfaces for polyatomic molecules with spectroscopic accuracy [4], it is
also appropriate to study the applicability of the algebraic approaches [5–20]. Most of
these approaches have been applied to problems in molecular physics for a number of
years to understand the rotational–vibrational dynamics of diatomic molecules [21].
In molecular physics, the most of the physical applications of quantum algebras have
been used for describing rotation–vibration spectra of diatomic molecules [22–24].
A phenomenological model for vibrational–rotational spectroscopy of molecules has
been compactly expressed using the quantum-group theoretic approach [25,26]. This
model has been also applied to the description of rotational bands of various atomic
nuclei [27–29].

The vibration of molecules is the best described using a quantum mechanical
approach. Molecules do not behave according to a harmonic oscillator description
used as an approximate treatment for low vibrational quantum numbers. On the con-
trary, the effect of bond breaking on the vibration of molecules is better explained by
an exponential type of potential than the harmonic oscillator. This type of exponen-
tial potential is known the Morse potential [30] and it is a convenient model for the
potential energy of a diatomic molecule. The Morse potential was introduced with the
purpose of producing an accurate description of typical spectra of diatomic molecules
through the analytically solvable Schrödinger equation. It is well-known that the Morse
potential is still one of the few model potentials which allow an exact solution for the
energy levels and wave functions, when it is used in the Schrödinger equation for a
vibrating diatomic molecule in the case of � l = 0, where � is the angular momentum
quantum number. Moreover, the ro-vibrating motion of a diatomic molecule for any �

can be described by means of some analytical methods [31]. It is clear that the Morse
potential has a finite value at r = 0 and, cannot satisfy the boundary conditions. In
the region of large r , the theoretical value for the well depth of the Morse potential is
smaller than the experimental one. In this region, a more suitable potential function
should be suggested to remove the difference between the theory and experiment. To
improve some inaccuracies of the Morse potential, an empirical potential (EP) func-
tion was suggested by Schiöberg [32]. The simple form of the EP is introduced as
follows

V±(r) = D{δ − ε [coth(ηr)]±1}2, (1)

where δ, ε and η are the setting parameters of the potential and D = De/(δ − ε)2

(De is the spectroscopic dissociation energy). The EP has a minimum value 0 at the
point of r = re

r = re = 1

η
arctanh

(ε

δ

)±1
, (2)
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and approaches De exponentially for large r . The functional forms of the EP given in
Eq. 1 are significant in the limits of 0 ≤ ε < δ for V+(r) and ε < δ ≤ 0 for V−(r)

[32].
The solution of the Schrödinger equation for an empirical potential (EP) gives

the ro-vibrating energy states of a diatomic molecule. This solution serves as the
basis for the description of the quantum aspects of diatomic molecules. In the present
study, for this reason, ro-vibrating energy states of a diatomic molecule in the EP is
approximately calculated by means of the Nikiforov–Uvarov (NU) method [33]. The
proposed method is advantageously applied to calculate the ro-vibrating energy states
of the molecules H2 and Ar2. The method used in this study is an alternative to previous
models called Semiclassical (SC) procedure and Quantum Mechanical (QM) method.
For more information on the NU method, one can refer to the recent theoretical works
[31,34–38] where the details of how to derive the energy states for a given potential
have been presented by introducing the basic equations of the method.

2 Ro-vibrating energy states in the EP

After having separate the angle-dependent and radial parts of the Schrödinger equation
for a diatomic molecule with the reduced mass µ, the relevant differential equation
for the radial motion is described as

(
d2

dr2 − L

r2 + 2µ

h̄2 (E − V±(r))

)
R(r) = 0, (3)

where L = �(� + 1) and � is the usual angular momentum quantum number. E is the
ro-vibrating energy states and V±(r) is the EP given by Eq. 1;

V±(r) = D{δ − ε [coth(ηr)]±1}2.

A more useful form of the EP is written in terms of hyperbolic functions

V±(r) = D

{
δ2 − 2δε

(
1 ± e−2ηr

1 ∓ e−2ηr

)
+ ε2

(
1 ± e−2ηr

1 ∓ e−2ηr

)2
}

. (4)

If the L appeared in Eq. 3 is not too large, the following approximation can be used
in place of the centrifugal term L/r2 (or �(� + 1)/r2) about the point of r = re

L

r2 ≈ L

r2
e

{
A0 + A1

±e−2ηr

1 ∓ e−2ηr
+ A2

( ±e−2ηr

1 ∓ e−2ηr

)2
}

, (5)
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where

A0 = 1 −
(

1 ∓ e−2ηre

2ηre

)2 (
8ηre

1 ∓ e−2ηre
− 3 − 2ηre

)
, (6)

A1 = ±2
(

e2ηre ∓ 1
) {

3

(
1 ∓ e−2ηre

2ηre

)
− (3 + 2ηre)

(
1 ∓ e−2ηre

2ηre

)}
, (7)

A2 =
(

e2ηre ∓ 1
)2

(
1 ∓ e−2ηre

2ηre

)2 (
3 + 2ηre − 4ηre

1 ∓ e−2ηre

)
. (8)

Substituting Eqs. 4 and 5 into Eq. 3, the radial equation becomes

d2 R(r)

dr2 − L

r2
e

{
A0 + A1

±e−2ηr

1 ∓ e−2ηr
+ A2

( ±e−2ηr

1 ∓ e−2ηr

)2
}

R(r)

+2µ

h̄2

(
E − D

{
δ2 − 2δε

(
1 ± e−2ηr

1 ∓ e−2ηr

)
+ ε2

(
1 ± e−2ηr

1 ∓ e−2ηr

)2
})

R(r) = 0.

(9)

Using a transformation s = ±e−2ηr , Eq. 9 can be formed as an equation of hyperge-
ometric type. This equation is written as

4η2s2 d2 R(s)

ds2 + 4η2s
d R(s)

ds
− L

r2
e

{
A0 + A1

s

1 − s
+ A2

(
s

1 − s

)2
}

R(s)

+2µ

h̄2

(
E − D

{
δ2 − 2δε

(
1 + s

1 − s

)
+ ε2

(
1 + s

1 − s

)2
})

R(s) = 0. (10)

The further re-arrangements on Eq. 10 lead to the following equation

d2 R(s)

ds2 + 1 − s

s(1 − s)

d R(s)

ds
+ 1

s2(1 − s)2

(
K s2 + Qs + S

)
R(s) = 0, (11)

where

K = µE

2η2h̄2 − L

4η2r2
e
(A0 − A1 + A2) − µD

2η2h̄2 (δ + ε)2, (12)

Q = − µE

η2h̄2 + L

4η2r2
e
(2A0 − A1) + µD

η2h̄2 (δ2 − ε2), (13)

S = µE

2η2h̄2 − L A0

4η2r2
e

− µD

2η2h̄2 (δ − ε)2. (14)

In order to solve Eq. 11 explicitly, the NU method can be used by following the basic
equations given in Ref. [31]. To do this, Eq. 1 of Ref. [31] and Eq. 11 of the present
study are compared with each other to determine the relevant polynomials;
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∼
τ (s) = 1 − s, σ (s) = s(1 − s),

∼
σ (s) = K s2 + Qs + S. (15)

Inserting the polynomials given by Eq. 15 into Eq. 6 of Ref. [31], the polynomial π(s)
becomes

π(s) = − s

2
± 1

2

√
s2(1 − 4K − 4k) + s(4k − 4Q) − 4S, (16)

or

π(s) = − s

2
± 1

2

√
ãx2 + b̃x + c̃, (17)

where ã = 1 − 4K − 4k, b̃ = 4k − 4Q and c̃ = −4S. According to the solution
procedure of the NU method given in Ref. [31], the equation of quadratic form under
the square root sign of Eq. 17 must be solved by setting the discriminant of this
quadratic equal to zero: � = b̃2 − 4̃ac̃ = 0. The discriminant yields a new quadratic
equation according to the constant k,

(k − Q)2 + (1 − 4K − 4k)S = 0, (18)

or

k2 − k(2Q + 4S) + Q2 + (1 − 4K )S = 0. (19)

The solution of Eq. 19 gives us two roots

k± = Q + 2S ± √
S(4K + 4Q + 4S − 1), (20)

where the signs of plus and minus represent the roots of k+ and k−, respectively. When
the individual values of k given in Eq. 20 are substituted into Eq. 16, the four possible
forms of π(s) are written as follows

π(s) = − s

2
± i

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[(
2
√

S + √
4K + 4Q + 4S − 1

)
s − 2

√
S
]
,

for k+ = Q + 2S + √
S(4K + 4Q + 4S − 1)

[(
2
√

S − √
4K + 4Q + 4S − 1

)
s − 2

√
S
]
.

for k− = Q + 2S − √
S(4K + 4Q + 4S − 1)

(21)

One of the four values of the polynomial π(s) is just proper to obtain the ro-vibrating
energy states because τ(s) given by Eq. 9 of Ref. [31] has a negative derivative for
this value of π(s). Therefore, the most suitable form of π(s) is chosen as

π(s) = − s

2
− i

2

[(
2
√

S − √
4K + 4Q + 4S − 1

)
s − 2

√
S
]

(22)
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for k− = Q + 2S − √
S(4K + 4Q + 4S − 1). Hence, τ(s) and τ ′(s) are obtained,

respectively,

τ(s) = 1 + 2i
√

S − s

(
2 + 2

√
L A2

4η2r2
e

+ 2µD

η2h̄2 ε2 + 1

4
+ 2i

√
S

)
,

τ ′(s) = −
(

2 + 2

√
L A2

4η2r2
e

+ 2µD

η2h̄2 ε2 + 1

4
+ 2i

√
S

)
< 0 .

(23)

where τ ′(s) represents the derivative of τ(s). To obtain a particular solution through
the NU method, the expressions of λ and λn are calculated by using the equalities of
λ = k− + π ′(s) and λn = −nτ ′(s) − (n(n − 1)/2)σ ′′(s), where n is the number of
nodes of the radial wave function R(r). Consequently, these equalities are determined

λ = 2µD

η2h̄2 ε(δ − ε) − L A1

4η2r2
e

− 2i
√

S

√
L A2

4η2r2
e

+ 2µD

η2h̄2 ε2 + 1

4

−1

2
− i

√
S −

√
L A2

4η2r2
e

+ 2µD

η2h̄2 ε2 + 1

4
, (24)

λn = n + n2 + 2n

√
L A2

4η2r2
e

+ 2µD

η2h̄2 ε2 + 1

4
+ 2ni

√
S. (n = 0, 1, 2, . . .) (25)

With λ = λn , the ro-vibrating energy states are obtained for a diatomic molecule

E ≡ En�± = D(δ − ε)2 + h̄2L A0

2µr2
e

− η2h̄2

2µ

⎡
⎣

2µD
η2h̄2 ε(δ − ε) − L A1

4η2r2
e

− 1
4 − 2

(
n + 1

2

) √
L A2

4η2r2
e

+ 2µD
η2h̄2 ε2 + 1

4 − (
n + 1

2

)2

n + 1
2 +

√
L A2

4η2r2
e

+ 2µD
η2h̄2 ε2 + 1

4

⎤
⎦

2

,

(26)

keeping in mind L = �(� + 1). The result obtained in Eq. 26 is also agrement with
that of Ref. [39]. The upper indices n and � of En�± represent the quantum numbers
whereas the lower ones ± comes from the two different forms of the EP. The physically
valid values of the ro-vibrating energy states are given by low values of δ and ε for
V−(r) or high values of δ and ε for V+(r) [32]. Of course, it is clear that by imposing
appropriate changes in the parameters of EP and keeping the constants De and re for
some molecules, the ro-vibrating energy states can be calculated by using Eq. 26.

3 Numerical applications

In order to test the accuracy of Eq. 26, the ro-vibrating energy states of the molecules
1H2 and 40Ar2 are calculated as a numerical example. The spectroscopic constants
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Table 1 The spectroscopic
constants of the EP listed in this
table are taken from Ref. [32]

Parameters H2 Ar2

De(cm−1) 38281 99.55

re(Å) 0.7414 3.7590

µ(a.u) 0.50407 19.9812

Table 2 The potential parameters of H2 molecule in the EP (V±(r))

EP ε δ η (Å−1) E±(SC) E±(QM) E±(NU )

(1) V−(r) −19.228 −0.961 1.8520 2171.70 2142.84 2142.84

(2) −31.702 −9.235 1.5059 2176.71 2159.74 2159.74

(3) −86.175 −57.223 1.1686 2173.96 2167.73 2167.73

(4) −410.090 −376.710 1.0135 2170.23 2168.93 2168.93

(5) V+(r) 426.826 463.102 0.9327 2167.68 2168.93 2168.93

(6) 47.294 102.341 0.6146 2153.69 2164.83 2164.83

(7) 28.685 117.121 0.3826 2139.57 2157.69 2157.69

(8) 21.250 213.212 0.1762 2124.29 2148.40 2148.40

Semiclassically (SC) and quantum mechanically (QM) calculated energy eigenvalues (cm−1) for the ground
state n = 0 (E±(SC) and E±(QM)) are taken from Ref. [32] and their results are compared with those of
the NU method (E±(NU ))

which is used in the numerical calculations of the selected molecules are given in
Table 1. The first calculation is applied to the molecule H2. The ro-vibrating energy
states of the H2 in the EP (for both V+(r) and V−(r)) for n = 0 and � = 0 are deter-
mined with the NU method by using the relevant potential parameters given in Table 2.
The numerical results obtained by the NU method are listed in Table 2 and compared
with the results obtained by a semiclassical (SC) procedure (the Bohr-Sommerfeld
quantization condition) and a quantum mechanical (QM) method pointed in Ref. [32].
In Table 2, E±(SC) and E±(QM) represent the semiclassical and quantum mechan-
ical energy eigenvalues, respectively, for the ground state n = 0. E±(NU ) indicates
the results obtained by using the NU method for the same ground state. It is seen that
from Table 2 the results obtained by means of the NU method are also agrement with
those obtained by a quantum mechanical method whereas the semiclassical procedure
is proportionally different. To attain the best representation of the ro-vibrating energy
states, the values of the potential parameters of V±(r) are changed systematically from
high values to low ones. These variations are the best appropriate for V−(r) with low
values of δ and ε or for V+(r) with high values of δ and ε. Therefore, the differences
between the ro-vibrating energy states calculated by the NU method and semiclassical
procedure are less than 0.01 cm−1, i.e. they are negligible small.

The second calculation is applied to the molecule Ar2. The obtained results are only
discussed for the ro-vibrating energy states in V+(r) because the potential parameters
of V+(r) were fitted with the spectroscopic constants given in Table 1. The parameters
and their values which are used in numerical calculations are ε = 25.23, δ = 41.75
and η = 0.6604 Å−1 [32]. The ro-vibrating energy states obtained by the NU method
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Table 3 Comparisons of experimentally determined values with the results of the SC procedure and the
NU method for the transition n �= 0 → n = 0 in the case of � = 0

n 
E1 
E2 
E3 
E4 
E+(SC) 
E+(NU )

1 25.74 25.49 25.21 25.56 25.75 25.72

2 46.15 45.63 45.02 46.00 46.01 45.95

3 61.75 60.70 60.04 61.32 61.42 61.33

4 72.66 71.33 70.92 71.52 72.52 72.42

5 79.44 – – – 79.79 79.66

6 – – – – 83.59 83.45

The differences between the energy states are in cm−1

and semiclassical procedure are presented in Table 3 with the differences 
E+ =
E+(n �= 0)− E+(n = 0) and compared with experimentally determined values which
are taken from the relevant references of Ref. [32]. In Table 3, the
E1,
E2,
E3 and

E4 represent four-different experimental results whereas 
E+(SC) and 
E+(NU )

Table 4 The ro-vibrating
energy states (in cm−1)
corresponding to the several
values of n and � for H2 and
Ar2 molecules in V+(r)

The results are obtained by using
the Nikiforov–Uvarov method

n � E+(for H2) E+ (for Ar2)

0 0 2168.93 15.3185

1 0 6307.41 41.0395

1 6308.22 23.7236

2 0 10185.1 61.2667

1 10187.0 47.8706

2 10190.9 2.8187

3 0 13803.7 76.6516

1 13806.9 66.6379

2 13813.1 31.7756

3 13822.3 −
4 0 17165.3 87.7380

1 17169.6 80.6749

2 17178.1 54.5210

3 17190.8 −
4 17207.6 −

5 0 20271.7 94.9827

1 20277.1 90.5216

2 20287.8 71.8969

3 20303.9 −
4 20325.2 −
5 20351.8 −
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show the results of the semiclassical procedure and the NU method, respectively. It is
seen that from Table 3 the results obtained by the NU method are also agrement with
experimentally determined values as well as the semiclassical procedure.

The further calculations on the H2 and Ar2 molecules are also given for the non-
zero values of �, i.e. � �= 0. In Table 4, we present the ro-vibrating energy states in
the potential V+(r) for relatively low values of vibrational (n = 0, 1, 2, 3, 4, 5) and
rotational (� = 0, 1, 2, 3, 4, 5) quantum numbers. The first calculation in the table
dedicates to the molecule H2 in the potential V+(r). The results obtained for the H2
clearly indicate that the approximation used in this study to determine the ro-vibrating
energy states gives the results of reasonable accuracy for those fairly small quantum
numbers, considering the first six values of n and �. The second calculation of the
table relates to the molecule Ar2 in the same potential. Although the approximation
loess its accuracy for the high ro-vibrational states, it is consistently much better for
the states of � = 0, 1, 2.

4 Conclusions

We have presented an useful approximation to obtain the ro-vibrating energy states
of a diatomic molecule in an empirical potential. To solve the Schrödinger equation
approximately, the Nikiforov–Uvarov (NU) method is used by reducing this equa-
tion to the differential equation of the hypergeometric type, after having make an
appropriate coordinate transformation. The method taken into account in this study is
systematical and efficient in finding the eigenvalues of the Schrödinger equation for
various diatomic molecules. The main result obtained by means of the NU method
is summarized in Eq. 26, considering the approximation given by Eq. 5. The validity
of the result is tested by calculating the ro-vibrating energy states of the molecules
H2 and Ar2. Comparisons with the results of previous methods (SC and QM) for the
ground state n = 0 and � = 0 indicate that the energy expression given by Eq. 26 is
consistently agrement with those obtained by these methods, without considering the
small differences come from the SC procedure. It is seen that the energy expression is
compatible with experimental results for fairly high values of the ro-vibrating energy
states of the molecule H2 whereas in the case of Ar2 it is only permissible for low
values of the ro-vibrating energy states, i.e. � = 0, 1, 2. Finally, the presented approx-
imation could be useful for other molecular potentials in calculating their higher or
lower ro-vibrating energy states.
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12. S.M. Ikhdair, R. Sever, J. Math. Chem. 41, 329 (2007)
13. S.M. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2007)
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